Lab Validation of PV Solar Inverter Control as STATCOM (PV-STATCOM)

Rajiv K. Varma and Ehsan Siavashi
The University of Western Ontario
London, ON, CANADA
rkvarma@uwo.ca
Novel Concept

Utilization of PV Solar Farm in Night and Day as STATCOM!

Termed as PV-STATCOM patent pending
Concept of Control:
PV Solar Farm Inverter as STATCOM

Nighttime: Entire Inverter Capacity Utilized for STATCOM
Daytime: Remaining Inverter Capacity Utilized for STATCOM

\[Q = \sqrt{S^2 - P^2} \]
PV-STATCOM Technology

• Applications - Motivation
 • Enhancement of Power Transfer Capacity
 • Improvement of Neighbouring Wind Farm Connectivity

• Lab Validation
 • Inverter for PV Solar system
 • Inverter as STATCOM
 • Inverter as PV-STATCOM
Applications of PV-STATCOM Technology
Enhancement of Power Transfer Capacity

Large generating complex supplying power over a 200 km line at 400 kV. A 100 MW PV solar farm is connected at line midpoint.
Increasing transmission capacity

- A 100 MW solar farm as PV-STATCOM can increase transmission limit by
 - 168 MW in the night, and
 - 142 MW during the day time even at high solar power generation (~ 94MW)

- Cost of PV-STATCOM Controller: ~ $200k
- Cost of equivalent SVC/STATCOM: ~ $50 Million
Improvement of Neighbouring Wind Farm Connectivity

- 4.5 MW PV solar farm
- 15 MW wind farm
A 4.5 MW solar farm as PV-STATCOM helps to connect an additional 7 MW of wind power in the night bringing ~ $2.1 Million new revenues annually for wind farm.

Similar benefits also achievable to substantial degree during daytime.

Cost of new Solar Farm Controller several orders of magnitude lower than a conventional STATCOM.
Lab Validation
prior to
Field Implementation in an Ontario Utility Network

- voltage regulation
- power factor correction
Test System

10 kW Inverter
Stages of Testing

- Hardware-In-Loop (HIL)
- RTDS studies
- PSCAD/EMTDC studies
- Laboratory validation studies
Conceptual/Actual Development of PV-STATCOM

PV-STATCOM

PV-STATCOM Controller

PV Inverter

6-pulse IGBT Bridge

Conventional PV Controller
Inverter Control for PV Solar System
PV Simulator Characteristic
Real Power Control – Steady State Operation

4kW Active Power

2.7kW Active Power

PCC Voltage

Inverter Current
Real Power Control - Transient Response

Step Change in Real Power from 4 kW to 6 kW Reactive Power ~ 0 VAr
Implemented by Step change in DC Voltage ~ 423 Vdc (4kW) to 400 Vdc (6kW)
Inverter Control for STATCOM
STATCOM Test ➔ Voltage Regulation

Inductive Mode
- AC Voltage
- DC Voltage
- PV Power (kW)
- Inverter Current

Capacitive Mode
- AC Voltage
- DC Voltage
- PV Power (kW)
- Inverter Current

PCC Voltage

Inverter Current
Transient Response
Condition: Real Power ~ 0 kW
Reactive Power ~ -6 to +6 kVAr
Step change of Reference Voltage ~ 0.92 PU (110V rms) to 1.07 (128V rms)
Inverter Control
for
PV-STATCOM
PV-STATCOM Test → Voltage Regulation

Inductive Mode
- **Reference Voltage**
 - Vref rms: 110, 115, 120, 125, 128
 - PCC Voltages (rms):
 - Va: 109.6
 - Vb: 111.0
 - Vc: 110.4

- **DC Voltage**
 - DC Reference: 400
 - DC Voltage: 399.1

- **PV STATCOM Mode**
 - Active

- **PV Power (kW)**
 - 5.54

- **Remaining Reactive (kVAR)**
 - 8.33

- **Inverter Reactive Power (kVAr)**
 - -6.11

Capacitive Mode
- **Reference Voltage**
 - Vref rms: 110, 115, 120, 125, 128
 - PCC Voltages (rms):
 - Va: 123.8
 - Vb: 131.2
 - Vc: 124.0

- **DC Voltage**
 - DC Reference: 400
 - DC Voltage: 399.4

- **PV STATCOM Mode**
 - Active

- **PV Power (kW)**
 - 5.89

- **Remaining Reactive (kVAR)**
 - 8.08

- **Inverter Reactive Power (kVAr)**
 - +4.45

PCC Voltage

- C1: Inverter Current-Phase A
- C2: Inverter Current-Phase B
- C3: Inverter Current-Phase C

Inverter Current

- A1: Inverter Current-Phase A
- A2: Inverter Current-Phase B
- A3: Inverter Current-Phase C
Transient Response

Real Power ~ 6 kW

Change in Reactive Power: -6 to +6 kVAr

Step change of Reference Voltage ~ 0.92 PU (110Vrms) to 1.07 (128Vrms)

- **PCC Voltage**
- **Inverter Current**
PV-STATCOM Test → Power Factor Correction

Transient Response

PV Real Power ~ 3 kW

Load Power ~ Active: 6 kW, Reactive: +9 kVAr (Inductive)

Step change in Power Factor ~ From 0.32 lag to Unity

Response time < 1 cycle

Grid Voltage

Active power (phase A)

Reactive power (phase A)

Grid Power Factor

PCC Voltage

Current (rms)

Inverter (phase A)

Load

Grid Current

Inverter Current

Load Current

Inverter

Load

Grid
PV-STATCOM Test → Power Factor Correction

Transient Response

- PV Real Power ~ 3 kW
- Load Power ~ Active: 6 kW, Reactive: -3 kVAR (Capacitive)
- Step change of Power Factor ~ From 0.707 leading to Unity

Response time < 1 cycle
Control Coordination of Two PV-STATCOMs

Grid

Transformer

PV Solar Simulator#1

Coupling Transformer

Three Phase VSC

RLC Filter

Photovoltaic System#1

Transformer

PV Solar Simulator#2

Coupling Transformer

Three Phase VSC

RLC Filter

Photovoltaic System#2

RLC Load
Conclusions

- Novel Control of PV solar farm as STATCOM (PV-STATCOM)

- Controls validated in Lab for voltage regulation and power factor correction on single 10 kW inverter

- Potential to bring:
 - New revenues to solar farms during nights and day
 - Better network performance for utilities
Acknowledgment

Financial Support:

- Ontario Centers of Excellence (OCE)
- Ontario Power Authority (OPA)
- Independent Electricity System Operator (IESO)
- Hydro One
- Bluewater Power, Sarnia
- NSERC

Lab Support:

- Mahendra A.C.
Thank You Questions?