Adaptive Robust Optimization with Dynamic Uncertainty Sets for Power System Operation Under Wind

Andy Sun
Georgia Institute of Technology
H. Milton Stewart School of Industrial and Systems Engineering
Joint work with Alvaro Lorca (ISyE)
Panel Session: Multistage Optimization and Its Impact on Electricity Market
IEEE PES General Meeting, July 30, 2014
1. Power Systems Operation under Uncertainty
 1.1 Current Practice
 1.2 Existing Models

2. Our Proposal for Real-Time Operation under Significant Wind
 2.1 Dynamic Uncertainty Sets for Wind Power
 2.2 Two-Stage Robust ED and Rolling Horizon
 2.3 Computational Experiments
Electric power system is the backbone of modern society

Electric power networks are among the world’s most complex engineering systems
At a distance, it looks like this
Electric Power System

• Close up, it looks like this
• Graphically, it looks like this
Mathematically, it looks like this

\[
\begin{align*}
\min_{e, f, p_i^g, q_i^g} & \quad c(p_i^g) = \sum_{i \in \mathcal{G}} \left(c_{i0}(p_i^g)^2 + c_{i1}p_i^g + c_{i2} \right) \\
\text{s.t.} & \quad p_i^g - p_i^d = \sum_{j \in \mathcal{N}} \left(e_i(G_{ij}e_j - B_{ij}f_j) + f_i(G_{ij}f_j + B_{ij}e_j) \right), \quad \forall i \in \mathcal{N} \\
& \quad q_i^g - q_i^d = \sum_{j \in \mathcal{N}} \left(f_i(G_{ij}e_j - B_{ij}f_j) - e_i(G_{ij}f_j + B_{ij}e_j) \right), \quad \forall i \in \mathcal{N} \\
& \quad (e_i^2 + f_i^2)\tilde{G}_{ii} + (e_i e_j + f_i f_j)\tilde{G}_{ij} - (e_i f_j - e_j f_i)\tilde{B}_{ij} \leq p_{ij}^{\max}, \forall (i, j) \in \mathcal{L} \\
& \quad (v_i^{\min})^2 \leq e_i^2 + f_i^2 \leq (v_i^{\max})^2, \quad \forall i \in \mathcal{N} \\
& \quad p_i^{\min} \leq p_i^g \leq p_i^{\max}, \quad \forall i \in \mathcal{G} \\
& \quad q_i^{\min} \leq q_i^g \leq q_i^{\max}, \quad \forall i \in \mathcal{G},
\end{align*}
\]
Electric Power Systems Problems

• Key problems:

 – Different time scales from min to decades
 – Multiple agents (GenCo, TransCo, DistCo, ISO, Utility...)
 – Significant uncertainties (load, generation, outages, construction, ...)

- Generation Transmission Planning: 5-15 years
- Generation Transmission Maintenance: one year
- Day-Ahead Unit Commitment: 24 hours
- Real-Time Economic Dispatch: Every 5 min
• Day-ahead unit commitment & Real-time economic dispatch

Info: Supply costs, load forecast
Decision: which units to commit
Goal: meet demand w. min cost
Constraints: physical, security

Hour
-12
Day-ahead UC

Info: Unit commit, realized load
Decision: generation level
Goal: min costs meet demand
Constraints: physical, security

0
Real-time Dispatch
New Challenge: Growing Uncertainty

- New challenge

Supply Variation: Wind Power Penetration
40% annual growth

Net Load Uncertainty Can be Huge!

[Ruiz, Philbrick 10]
Current Practice: Reserve Adjustment

• **UC**: Deterministic Model with Reserve
 Incorporating extra resources called reserve
 [Sen and Kothari 98] [Billinton and Fotuhi-Firuzabad 00]

• **ED**: Deterministic Single-Period Model

Drawbacks:
1. Uncertainty not explicitly modeled
2. Both system and locational requirement are preset, heuristic
3. Static model
Existing Proposals

• **UC: Stochastic Optimization Approach**
 Uncertainty modeled by distributions and scenarios
 [Takriti et. al. 96, 00] [Ozturk et. al. 05][Wong et. al. 07]

• **ED: Deterministic Multi-period (Look-Ahead)**

Weakness:
1. Hard to select “right” scenarios in large systems
2. Computational burden
3. Uncertainty still not considered in Look-Ahead ED
Existing Robust Models for UC and ED

- Robust Optimization for unit commitment
 - Adaptive two-stage robust SCUC models
 - [Jiang et. al. 2012], [Zhao, Zeng 2012],
 - [Bertsimas, Litvinov, Sun, Zhao, Zheng 2013] (joint w. ISO-NE)
 - RO for security optimization
 - [Street et. al. 2011], [Wang et. al. 2013]
 - Unifying RO with Stochastic UC
 - [Wang et. al. 2013]

- Robust Optimization for economic dispatch
 - AGC control (two-stage: dispatch + AGC)
 - [Zheng et. al. 2012]
 - Affine policy (dispatch as linear function of total load)
 - [Jabr 2013]
 - Robust multi-period ED for system flexibility
 - [Thattle, Sun, Xie 2014]
Common Features of Existing Robust Models

1. Similar Two-Stage Structures:
 • First-stage decision over multiple periods
 • Second-stage recourse over same periods

2. Static Uncertainty Sets
 • Do not capture correlations/dynamics of uncertainty processes
Uncertainty model of net load variation

$$\mathcal{D}^t(\tilde{d}^t, \hat{d}^t, \Delta^t) := \left\{ d^t \in \mathbb{R}^{N_d} : \sum_{i \in N_d} \frac{|d_i^t - \tilde{d}_i^t|}{\hat{d}_i^t} \leq \Delta^t, \right. $$

$$ \left. d_i^t \in [\tilde{d}_i^t - \hat{d}_i^t, \tilde{d}_i^t + \hat{d}_i^t], \forall i \in N_d \right\} $$

Budgeted
Two-Stage Fully-Adaptive Robust Optimization

• Adaptive Robust UC [Bertsimas et. al. 2013]
 – **Objective**: Fixed-Cost + Worst case Dispatch Cost

\[
\min_{x,u,v} \sum_{t} \sum_{i} F_i^t x_i^t + S_i^t u_i^t + G_i^t v_i^t + \max_{d \in \mathcal{D}} \min_{p \in \mathcal{W}(x,d)} \sum_{t} \sum_{i} C_i^t p_i^t
\]

\[s.t. \quad F(x, u, v) \leq 0\]
\[x, u, v \text{ binary.}\]

Constraints on commitment decision: Startup/shutdown, Min-up/down...

Find worst case \(d\) for dispatch

For a fixed \(x, d\) minimize dispatch cost

Second-Stage Problem
Our Proposal

- Dynamic Uncertainty Sets
- Two-Stage Robust ED and Rolling Horizon Policy
In a multi-period problem:

Let ξ_t be the uncertainty vector at time t.

Uncertainty set of ξ_t depends on the realization of uncertainties before t.

$$\Xi_t(\xi_{[1:t-1]}) = \left\{ \xi_t : \exists u_t \text{ s.t. } f(\xi_t, u_t) \leq 0 \right\}$$

For example: a dynamic interval uncertainty set:

$$\xi_t \in \left[\underline{\xi}_t(\xi_{t-1}), \bar{\xi}_t(\xi_{t-1}) \right]$$

Polyhedral dynamic uncertainty sets:

$$\sum_{\tau=1}^{t} (A_{\tau} \xi_{\tau} + B_{\tau} u_{\tau}) \leq 0$$
A dynamic uncertainty set for wind speed:

\[\mathcal{R}_t(r_{[t-L:t-1]}) = \left\{ r_t : \exists \tilde{r}_{[t-L:t]}, u_t \quad \text{s.t.} \quad r_t = g_t + \tilde{r}_t, \forall t = t - L, \ldots, t \right\}, \]

Seasonal pattern

Residual

Linear dynamics: Temporal & Spatial correlation

Uncertainty in Estimation with Budget Constraints
Wind Turbine Power Curve

- Power-curve model: GE 1.5MW wind turbine

Technical data

<table>
<thead>
<tr>
<th>Operating Data</th>
<th>1.5sle</th>
<th>1.5xle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Capacity</td>
<td>1.500 kW</td>
<td>1.500 kW</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-30°C to +40°C</td>
<td>-30°C to +40°C</td>
</tr>
<tr>
<td>(with Grid-Weather Extreme Package)</td>
<td>-40°C to +50°C</td>
<td>-40°C to +50°C</td>
</tr>
<tr>
<td>Cut-in Wind Speed</td>
<td>3.5 m/s</td>
<td>3.5 m/s</td>
</tr>
<tr>
<td>Cut-out Wind Speed (10 min avg)</td>
<td>25 m/s</td>
<td>20 m/s</td>
</tr>
<tr>
<td>Rated Wind Speed</td>
<td>14 m/s</td>
<td>11.5 m/s</td>
</tr>
<tr>
<td>Wind Class — IEC</td>
<td>IIa $V_{e50} = 55$ m/s $V_{ave} = 8.5$ m/s</td>
<td>IIIb $V_{e50} = 52.5$ m/s $V_{ave} = 8.0$ m/s</td>
</tr>
</tbody>
</table>

Electrical Interface

- Frequency: 50/60 Hz
- Voltage: 690V

Rotor

- Diameter: 77 m
- Swept Area: 4657 m²

Tower

- Hub Heights: 65/80 m

Power Control

- Active Blade Pitch Control
• Use Power Curve to Model Available Wind Power:
 – Piecewise linear approx of turbine power curve:
\[
\overline{p}_{it}^{w} \geq h_{i0} + h_{ik} r_{it} \quad \forall k = 1, \ldots, K \tag{1}
\]
 Plateau part can be handled in optimization model
• Dynamic Uncertainty Set for Available Wind Power
\[
\mathcal{P}_{t}^{w}(\mathbf{r}_{[t-L:t-1]}) = \left\{ \overline{p}_{t}^{w} : \exists \mathbf{r}_{t} \in \mathcal{R}_{t}(\mathbf{r}_{[t-L:t-1]}) \text{s.t. (1) is satisfied} \right\}
\]
• Actual Power Dispatch from Wind Farms:
\[
0 \leq p_{it}^{w} \leq p_{i}^{w,\text{max}} \quad \forall i \in \mathcal{N}^{w}
\]
\[
p_{it}^{w} \leq \overline{p}_{it}^{w} \quad \forall i \in \mathcal{N}^{w}
\]
Two-Stage Robust ED and Rolling Horizon

• Adaptive robust ED:
 – **Time period 1** is decision to be implemented
 – **Future periods** with dynamic uncertainty sets

$$\min_{x \in \Omega_1^{det}} \left\{ c^\top x + \max_{d \in \mathcal{D}, \bar{p}^w \in \bar{P}^w} \min_{y \in \Omega(x, d, \bar{p}^w)} b^\top y \right\}$$

Stage-1

Stage-2

$t = 1:00$

$t = 1:05, 1:10, ..1:30$
• Rolling-horizon framework for real-time dispatch
• Dynamically update uncertainty model:
 – Wind uncertainty model updated every day and every 10 minutes
Experiment Setup

- IEEE Test Systems with 14-bus and 118-bus
- 14-bus system: 3 thermal gen, 4 wind farms, 11 loads, 20 transmission lines

Daily system demand:
132.6MW-319.1MW
Avg: 252.5MW
Wind farms:
- 4 wind farms, each of 75MW (50 GE 1.5MW)
- Real wind data: 5 min wind speed for a year
- Exhibit significant temporal/spatial correlations
- Avg wind speeds: 4.8m/s, 5.6m/s, 5.1m/s, 5.5m/s
- Avg total available wind power: 104.2MW
 - Equivalent to 34.7% capacity factor
 - Or 32.7% of peak load, 20% of thermal generation
 - Represent significant level of wind penetration
Objectives

• Adaptive robust ED v.s. Determ Look-Ahead ED:
 – Cost efficiency
 – Operational reliability
 – Insights on robust ED operation behavior

• Dynamic uncertainty sets v.s. Static uncertain. Sets:
 – Pareto frontier of cost-v.s.-reliability curve
• Adaptive robust ED v.s. Determ Look-Ahead ED:

<table>
<thead>
<tr>
<th>PERFORMANCE OF ROBUST AND DETERMINISTIC ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>1.0</td>
</tr>
</tbody>
</table>

- Cost Avg: Rob-ED 7.1% ($\Gamma = 0.5$) lower than LA-ED
- Cost StD: Rob-ED 41.2% lower than LA-ED; Rob-ED up to 82.0% lower than LA-ED
- Penalty freq: Rob-ED 52.4% lower than LA-ED; Rob-ED up to 80.1% lower than LA-ED
Robust ED Prepares System for Wind Drop

- Behavior of Rob-ED model:

<table>
<thead>
<tr>
<th>Operational Aspects of Robust and Deterministic ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma^{\psi})</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>1.0</td>
</tr>
</tbody>
</table>

| Therm avg (MW) | 87.9 | 87.2 | 85.0 | 80.8 | 74.0 | 61.5 |
| Wind avg (MW) | 87.9 | 87.2 | 85.0 | 80.8 | 74.0 | 61.5 |
Dynamic U Sets Pareto Dominate

- Dynamic uncertainty sets v.s. Static uncert sets

SUS1: No temp
SUS2: No temp/spatial
DUS: w. temp/spatial

Pareto Frontier
Wind Uncertainty is Most Important

- Load Uncertainty + Wind Uncertainty
IEEE 118-Bus Test Results:

<table>
<thead>
<tr>
<th>Performance of LA-ED and Rob-ED for 118-bus system</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma^w)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>Cost Avg ($)</td>
</tr>
<tr>
<td>Cost Std ($)</td>
</tr>
<tr>
<td>Penalty Avg ($)</td>
</tr>
<tr>
<td>Penalty Freq (%)</td>
</tr>
<tr>
<td>Therm Avg (MW)</td>
</tr>
<tr>
<td>Wind Avg (MW)</td>
</tr>
</tbody>
</table>

- Cost Avg: Rob-ED reduces 43.4% (1.5), 39.7% (2.0)
- Cost StD: Rob-ED reduces 87.7% (1.5), 93.9% (2.0)
- Penalty freq: Rob-ED reduces 98.4% (1.5), 99.7% (2.0)

Summary

• New Uncertainty Models for Uncertain Sources with High Spatial/Temp Correlation
 – Dynamic Uncertainty Sets
 – Data Driven Approach

• Different Two-Stage Robust Models for Real-Time Operations
 – Rolling Horizon Market Operation

• Future direction:
 – Deeper understanding of dynamic uncertainty sets
 – Data-driven approach for uncertainty modeling
 – Market integration
 – Implementation in real systems
THANK YOU!

Questions?

• Andy Sun
 andy.sun@isye.gatech.edu
 ISyE, Georgia Tech
A Real-World Example: ISO-NE Power System

- 312 Generators
- 174 Loads
- 2816 Nodes
- 90 representative trans lines
- 24-hr data: gen/load/reserve
- Total gen cap: 31.4GW
- Total forecast load: 14.1GW
• Solve AdptRob and ResAdj UC solutions for \(\Delta^t = 0, 0.1Nd, \ldots, Nd \) for all \(t \).

• Fix UC solutions, simulate dispatch over load samples
 – 1000 load samples from \([\bar{d}_i^t - \hat{d}_i^t, \bar{d}_i^t + \hat{d}_i^t]\)

• Compute average dispatch cost and std.

• Avg dispatch cost: Economic efficiency
• Standard deviation: Price and Operation Stability
• Robustness to distributions
Computational Results (I-a): Average dispatch cost

Average Dispatch Cost under Normal Distribution

Average Dispatch Cost (M$)

Budget of Uncertainty (Δ/Nd)

- 2.7% relative saving or 472.9k$

Avg Dispatch Cost Relative Saving := (ResAdj – AdptRob)/ResAdj

0.65% - 2.7%
Computational Results (II): Volatility of Costs

<table>
<thead>
<tr>
<th>Budget of Uncertainty</th>
<th>AdptRob Std disp cost ($k)</th>
<th>ResAdj Std disp cost ($k)</th>
<th>ResAdj/AdptRob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>47.5</td>
<td>687.5</td>
<td>14.48</td>
</tr>
<tr>
<td>0.2</td>
<td>46.4</td>
<td>687.5</td>
<td>8.62</td>
</tr>
<tr>
<td>0.3</td>
<td>45.4</td>
<td>377.8</td>
<td>8.32</td>
</tr>
<tr>
<td>0.4</td>
<td>44.2</td>
<td>366.7</td>
<td>8.29</td>
</tr>
<tr>
<td>0.5</td>
<td>44.1</td>
<td>377.2</td>
<td>8.55</td>
</tr>
<tr>
<td>0.6</td>
<td>44.0</td>
<td>370.9</td>
<td>8.43</td>
</tr>
<tr>
<td>0.7</td>
<td>44.0</td>
<td>377.1</td>
<td>8.58</td>
</tr>
<tr>
<td>0.8</td>
<td>43.9</td>
<td>370.7</td>
<td>8.44</td>
</tr>
<tr>
<td>0.9</td>
<td>43.9</td>
<td>357.9</td>
<td>8.15</td>
</tr>
<tr>
<td>1.0</td>
<td>43.9</td>
<td>361.0</td>
<td>8.22</td>
</tr>
</tbody>
</table>

Coeff Var: $44k/17.2M=0.25\%$

370k/17.3M=2.1%

Significant reduction in cost volatility!
Computational Results (III): Robustness to Distribution

Avg Dispatch Cost of AdptRob

- **Uniform**
- **Normal**

Relative difference: 0.0368% - 0.0920%
Absolute difference: $6.3k – $15.8k
Computational Results: Robustness to Distribution

Avg Dispatch Cost of ResAdj

Relative difference: 1.00% - 2.19%
Absolute difference: $174.4k – $382.2k
Advantages of Adaptive Robust UC

- saves dispatch cost (6.92% $1.27M)
- significantly reduces cost volatility
- robust against load distributions

Economic Efficiency

Reduces Price & System Operation Volatility

Data Driven Approach Demand Modeling