Generalized State Estimation for Distribution Networks with a CIM Interface

Kemal Celik
Nexant, Inc.
Power Network State Estimation

- State Estimation is a statistical process
 - Solution depends on the majority of the data
 - As redundancy decreases, the noise filtering capability diminishes
 - Gateway to several advanced analytical applications
- Analog measurements for voltage magnitudes, power flows and power injections

$$z_i = f(x_i) + e_i$$

- Small errors (noise) in analog measurements
 - L_2 norm minimization of measurement residuals results in well-known WLS based algorithms
- Functions, $f(x)$, are known
- Large (gross) errors in analog measurements are detected and identified by (normalized) measurement residuals
State Estimation for Distribution Networks (Feeders)

- Distribution networks are (mostly) managed in a reactionary mode
- There are very few measurements
 - Redundancy is (much) less than 1
 - Some current magnitude and voltage measurements at the substation (at xmers, regulators)
 - Recently, more measurements at remotely controllable xmer and capacitor banks, switches
 - Pseudo measurements are used (may lead to numerical solution problems)
- Most (residential) networks are radial (ad-hoc algorithms to utilize the few measurements available)
- Some DMSs without state estimation function
 - DMSs are typically being used for monitoring
State Estimation for Distribution Networks

• Order of magnitude difference in the length of distribution lines
 – Several hundred/thousand smaller/disjoint networks with major network impedance data problems

• SCADA/RTU is expensive

• Finally, the stars are shining on distribution operations and planning
 – Smart Grid efforts focusing mainly on distribution
 – (Small? size) renewables, community storage, electric vehicles
 – Micro-grids are being implemented
 – Meshed/looped networks are becoming common
 – (Small/residential) demand response is becoming feasible
 – Several deployments/pilot projects of proactive voltage control
 – Traditional protection schemas are being threatened
State Estimation for Distribution Networks

• New types of sensors/measurements
 – Smart meters
 – Line monitors/fault detectors
 – PMUs
 – Access to information system that were typically silos until now

• Robust algorithms for DSE are needed
 – Innovatively deal with low redundancy
 – Handle all types of measurements
 – Handle all types of network topologies/equipment
State Estimation – Typical (Conventional) Approach

- Bus/branch network model through network topology processor
- Assume that
 - the digital (switch) measurements are 100% correct (topology is exactly known)
 - branch parameters are correct
 - there is enough redundancy in analog measurements for some amount of gross errors

\[z_i = f(x_i) + e_i \]
Modeling Challenges (Errors)

Assume a linear model

Calculate best \(m \) & \(b \) given \((x,y)\) set

\[y_i = mx_i + b \]

This residual is too big

Mark/eliminate this as bad data
Modeling Challenges (Errors)

$y_i = mx_i + b$

If assumption of linear model is wrong

$y_i = mx_i^2 + b$

And, the model is quadratic

Measurements identified as bad data change

- Topology & branch parameter errors lead to similar problems
State Estimation – Generalized Approach

- Node/breaker network model is preserved (whenever necessary)
- Redundant measurements (z), and flows through switches (s) and network impedances (p) in addition to conventional state variables (x)
- A single interacting set of data of switch statuses, analog measurements & device parameters
- Small errors (noise) in sensor data following normal distribution

$$z_i = f(x_i, s_i, y_i) + e_i$$
Modeling of Switches & Uncertain Branch Parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>Diagram</th>
<th>Model</th>
<th>Pseudo-Measurement</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed Switch</td>
<td></td>
<td>$P_{mn} = -P_{nm}$</td>
<td>Zero Voltage Difference</td>
<td>p_{mn} q_{mn}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Q_{mn} = -Q_{nm}$</td>
<td>$0 = V_m - V_n$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\theta_m - \theta_n$</td>
<td>$0 = \theta_m - \theta_n$</td>
<td></td>
</tr>
<tr>
<td>Open Switch</td>
<td></td>
<td>$P_{mn} = -P_{nm}$</td>
<td>Zero Flow</td>
<td>p_{mn} q_{mn}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Q_{mn} = -Q_{nm}$</td>
<td>$0 = p_{mn}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$0 = q_{mn}$</td>
<td></td>
</tr>
<tr>
<td>Series Branch</td>
<td></td>
<td>$P_{mn} = P_{mm} + P'_{mn}$</td>
<td>Zero Current Difference</td>
<td>$p'{mn}$ $q'{mn}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Q_{mn} = Q_{mm} + Q'_{mn}$</td>
<td>$0 = p'{mn} V_n + (p'{mm} \cos \theta_{mn} - q'{mm} \sin \theta{mn}), V_m$</td>
<td>$p'{mn}$ $p'{mm}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P_{nm} = P_{nn} + P'_{nm}$</td>
<td>$0 = q'{mn} V_n + (p'{mm} \sin \theta_{mn} + q'{mm} \cos \theta{mn}), V_m$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Branch</td>
<td></td>
<td>$P_{mn} = P_{mm} + P'_{mn}$</td>
<td>Zero Admittance Difference</td>
<td>p_{mn} q_{mn}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Q_{mn} = Q_{mm} + Q'_{mn}$</td>
<td>$0 = p_{mm} V_n^2 - p_{mn} V_n^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P_{nm} = P_{nn} + P'_{nm}$</td>
<td>$0 = q_{mm} V_n^2 - q_{mn} V_n^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From O. Alsac, N. Vempati, B. Stott & A. Monticelli IEEE Paper

3-phase formulation is a bit more complicated
Conventional vs. Generalized State Estimation

Conventional
• Read in node/breaker data
• Run measurement plausibility
• Run network topology processing
• Run SE on bus/branch model
• Run bad data (BD) analysis
 – If none, stop
 – Delete measurements with the largest normalized residuals & run SE again

Generalized
• Read in node/breaker data
• Run measurement plausibility
• ** Run network topology processing
• Run SE on bus/branch model
• Run bad data (BD) analysis
 – If none, stop
 – If BD are detected, go to next SE run
• Read in node/breaker data
• Build bad data pockets
• Use a hybrid model & model bad data pockets in detail
• Zoom around BD in pockets & perform combinatorial analysis
 – Correct topology errors & eliminate BD
 – Go to **
Applying Generalized State Estimation to Distribution Networks

Pockets & windows do not grow in size with total number of buses, thus their solutions are system size independent.
Common Information Model

- Equipment (EQ)
- Connectivity (CN)
- Geographical (GEO)
- Measurement (MS)
- Topology (TP)
- State (SV)
- Graphics (GR)
- Boundary (BO)

CDPSM
- Equipment
- Connectivity
- Measurement
- Geographical

ENTSO-E
- Equipment
- Topology
- State
Modular CIM Profile for Generalized SE

- Equipment
- Connectivity
- Geographical
- Topology
- Boundary
- Graphics
- State
- Measurement

- Visualization
- Calculations
- Simulation Scenarios
- Storage
Complications & Challenges

- Network topology processing
 - Needs to be consistent at different layers/functions
- Boundary profile group
 - As multiple network models used in the simulations/calculation increase, so do the complications for retaining data in both node/breaker & bus/branch models
 - Multiple sequential SE runs require mapping between node/breaker (N/B) & bus/branch (B/B) models to persist accurately
 - First run is a conventional SE
 - Second run is a more detailed analysis
 - During the whole sequence, N/B \leftrightarrow B/B mapping needs to persist and remain consistent
- Visualization
 - Needs both node/breaker & bus/branch to be consistently available
Conclusions

• Generalized SE is much more powerful and robust than the conventional state estimation
• DSE will get more attention and become a regular DMS component as network modeling accuracy requirements become more stringent
• CIM is a powerful data interface for generalized DSE
 – Meets the requirements for tailoring to both node/breaker & bus/branch models
 – Similar to the problems/challenges that have been traditionally a big problem for transmission network operators vs. planners
 – Further complications due to its ever-evolving nature and not necessarily a user friendly format
 – Still the best choice for hybrid data requirements