THE NORDIC TEST SYSTEM FOR VOLTAGE STABILITY ASSESSMENT

Thierry Van Cutsem

Department of Electrical and Computer Engineering
University of Liège, Belgium

Université de Liège

14PESGM0110
IEEE PES General Meeting,
Washington D.C., July 30, 2014
Context

• One of the two systems prepared by the Task Force on « Test Systems for Voltage Stability and Security Assessment »
 • under the auspices of Power System Stability Sub-committee

• modified version of the so-called “Nordic32” system proposed in 1995 by a CIGRE WG

• focus on long-term voltage stability
 • system evolution over several minutes after a disturbance
 • system also exposed to short-term (angle) instability
Contents

• **System overview**
• Modelling
• Dynamic responses to disturbances
• Preventive voltage security assessment
• Corrective (post-disturbance) control
- transmission: 400 & 220 kV
- sub-transmission: 130 kV
- 50 Hz system
- 74 buses
- 20 generators
- 102 branches, including
 - 20 step-up transformers
 - 22 distribution transformers
Hydro units - primary frequency control

Long, series-compensated 400-kV lines

Thermal units - constant mechanical power

Synchronous condenser
Dynamic security assessment

• **Operating point A**: very insecure
 - several single contingencies cause instability
 - even some transient angle instability cases

• **Operating point B**: secure
 - the system can stand a 5-cyle (0.1 s) fault on any line, cleared by tripping the line
 - the system can stand the outage of any single generator

• **Criteria used in long-term dynamic simulation**
 - all distribution voltages restored into their deadband by Load Tap Changers (⇒ all load powers restored)
 - no loss of synchronism
 - no generator has its terminal voltage below 0.85 pu (except during faults)
Contents

• System overview
• **Modelling**
• Dynamic responses to disturbances
• Preventive voltage security assessment
• Corrective (post-disturbance) control
Exciter, AVR, PSS and OverExcitation Limiter (OEL)

fixed delay or inverse-time
Capability curves of round-rotor generators for various terminal voltages
Turbine model

Speed-governor model
Load model

Load Changer (LTC):
- voltage deadband: [0.99 1.01] pu
- range of transformer ratio: [0.88 1.20] pu/pu
- 33 tap positions
- various tapping delays

\[P = P_0 \left(\frac{V}{V_o} \right)^{\alpha} \]
\[Q = Q_0 \left(\frac{V}{V_o} \right)^{\beta} \]
Contents

• System overview
• Modelling
• **Dynamic responses to disturbances**
• Preventive voltage security assessment
• Corrective (post-disturbance) control
3-phase 5-cycle (0.1 s) fault cleared by opening the line, which remains opened.
Secure oper. point B - Transmission voltage

LTC tap changes
Secure oper. point B - Voltage at LTC-controlled distrib. buses
Insecure oper. point A - Transmission voltages

North area

South area

Central area

bus 1041 : voltage magnitude (pu)
bus 1042 : voltage magnitude (pu)
bus 4012 : voltage magnitude (pu)
bus 4062 : voltage magnitude (pu)
Insecure oper. point A - Generator field currents
Insecure op. point A - Voltage at LTC-controlled distrib. bus

LTC voltage deadband
Insecure op. point A - rotor angles (wrt center of inertia)

g6 going out of step wrt other generators
Contents

• System overview
• Modelling
• Dynamic responses to disturbances
• Preventive voltage security assessment
• Corrective (post-disturbance) control
Secure Operation Limit (SOL)

• An SOL corresponds to the maximum « stress » that can be accepted in the pre-contingency configuration such that the system responds in a stable way to each of the specified contingencies.

• stress = increase of load power in Central area

• tools:
 • power flow computations for various values of the Central area load
 • long-term dynamic simulations to assess the system response to each contingency
Example of SOL determination - secure oper. pt B

- marginally stable case
- marginally unstable case

at operating point B
- oper. pt B with central load increased by 350 MW
- oper. pt B with central load increased by 375 MW
- oper. pt B with central load increased by 400 MW
- oper. pt B with central load increased by 500 MW
Contents

• System overview
• Modelling
• Dynamic responses to disturbances
• Preventive voltage security assessment
• Corrective (post-disturbance) control
Corrective control: LTC voltage set-point reduction

- 5% voltage setpoint reduction on 11 LTCs
- No corrective action
- 5% voltage setpoint reduction on 5 LTCs
Corrective control: undervoltage load shedding

300 MW load shed by distributed controllers (each shedding 50 MW every 3 s until $V_{transm} > 0.90 \text{ pu}$)

no corrective action
Thank you for your attention!

t.vancutsem@ulg.ac.be
www.montefiore.ulg.ac.be/~vct
Insecure oper. point A - Generator terminal voltages