IEEE PES conference on Innovative Smart Grid Technologies

Jan 21st 2010

Prafulla Deo & Tushar Shah

Innovative Electromagnetic Dynamic Fault current Limiter operating at Ambient Temperature for Smart Grid
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Relevance of Fault current limiters to Smart Grid

An important feature of the smart grid is stability and reliability achieved through inherent responses of components and supervisory controls.

Short circuits are major destabilizers for the grid both in magnitude and transient effects. They can lead to progressive and permanent damage to network components as also cascading failures including blackouts.

Fault current limiters (FCL) prevent high short circuit currents thus reducing the electromagnetic and thermal stresses while limiting network disturbances.

Dynamic FCL (DFCL) presented here is an inherently smart device as it responds to the varying fault or source impedances to keep the short circuit current limited to safe values and still prevent fault hanging.
Hazards due to High short circuit currents –

• Excessive electromagnetic stresses - $F_{\text{max}} \propto I_{\text{peak}}^2$

• High thermal stress due to quick temperature rise – $I_{\text{sc}}^2 \cdot t$

• High voltage drop in the network - $V_D = I_{\text{sc}} \cdot Z_{\text{source}}$

• Large arc energy in the fault leads to fire hazards – $E = I_{\text{sc}}^2 \cdot r \cdot t$

• Large arc energy on the fault clearing switchgear – $E = \frac{1}{2} L \cdot I_{\text{sc}}^2$

• Cascade tripping and Black outs

Limiting the short circuit current is very Important for smart grid
Some of the fuse-less Fault current Limiter Technologies -

- Isolating Transformer With high p.u. impedance $X_{p.u.}$
- Fixed Inductor L
- Saturable Inductor L_s / L_n
- Fixed Inductor with Superconducting switch $L \parallel 0$ to $L \parallel R_t$
- Superconducting Cable R_0 / R_t
- Incremental Permeability Dynamic FCL $L \propto I$
 At ambient Temperature
Reasons for High short circuit currents

- Large source capacity
- Interconnected networks for redundancy and reliability
- Distributed Generation
- Contribution to fault from large motors
- Large PF correction capacitors on Line
The ideal Fault current limiter -

• Fast response time

• Limit the first peak as well as rms short circuit current

• Should operate in wide ambient variations without external cooling or controlled atmosphere

• Should respond directly to the short circuit current without depending upon separate supply or signal

• Very good reliability and repeatability

• Should limit current to low value and still allow discrimination and relay coordination. Avoid “Fault Hanging”
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

3 phase schematic construction of the Dynamic fault current limiter
Present status of Dynamic FCL –

1. Voltage range - 15 KV tested and installed commercially
 138 KV under validation
2. Nominal current – 1000 amps tested and installed commercially
 4000 A under validation
3. Short circuit limiting ratio – Reduction Achieved 7 max. (14% of
 (rms) prospective short circuit current)
4. 1st peak limiting – similar to rms reduction ratio
5. Response time – Less than quarter cycle – Set ON
 Less than 1 cycle Auto-Reset
6. Short circuit withstand – 3 short circuits of 3 second duration
 consecutive.
7. Cooling – Air Natural at normal ambient -20 deg C to + 50 deg C
 (- 4 deg F to + 122 deg F)
8. Epoxy Resin cast dry type design
9. Connection options – Cable Box, Flanged bus duct
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Case 1 – Single transformer 138 / 13.8 KV, 60 MVA Z - 16%

Down stream 3 ph fault - 45 KA peak, 16 KA rms without DFCL

- 16 KA peak, 6 KA rms with DFCL
Case 1 – Single transformer 138 / 13.8 KV , 60 MVA Z - 16%
Downstream 3 ph fault - 45 KA peak , 16 KA rms without DFCL
- 16 KA peak , 6 KA rms with DFCL

Peak values for maximum DC Offset – Peak to rms ratio – 2.8 approx

Prospective and limited fault current waveforms
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Case 2 – 4 transformers in parallel

138 KV

TF1-60 MVA, Z - 16%

16 KA/6 KA

DFCL

CB

TF2-60 MVA, Z - 16%

16 KA/6 KA

DFCL

CB

TF3- 60 MVA, Z - 16%

16 KA/6 KA

DFCL

CB

TF4-60 MVA, Z - 16%

16 KA/6 KA

DFCL

CB

3 ph 64 KA Short To circuit 16 KA

13.8 KV
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Case 2 – Four transformers // 138 / 13.8 KV, 60 MVA Z - 16%
Down stream 3 ph fault - 180 KA peak, 64 KA rms without DFCL
- 60 KA peak, 24 KA rms with DFCL

Peak values for maximum DC offset - Peak to rms ratio – 2.8 approx

Prospective and limited fault current waveforms
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Case 3 – DFCL on 138 KV bus tie for bi-directional current limit
Downstream 3 ph fault - 100 KA peak, 40 KA rms without DFCL
- 55 KA peak, 25 KA rms with DFCL for fault on either supply line

20 KA limited to 5 KA by DFCL

138 KV

CB

DFCL

CB

138 KV

3 ph Short circuit
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

13.8 KV

27 KA

TF-15 MVA, CB
Z – 7%

34 KA w/o DFCL
12 KA with DFCL

480 V

Local Generator
2 MVA
7 % X”d

Case 4– Distributed generation . Local Generation in parallel with Utility
Down stream 3 ph fault - 150KA peak , 61KA rms without DFCL
- 100 KA peak , 39 KA rms with DFCL
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Case 4– Reduction in Fault contribution from Large motors

Down stream 3 ph fault - 70 KA peak , 31 KA rms without DFCL
- 46 KA peak , 21 KA rms with DFCL
Randomly aligned domains in the unprocessed core

Radially pre-aligned domains in the processed core

Circumferential Flux
Near constant permeability of conventional core

Incremental permeability of DFCL core

Magnetization curves for the DFCL core
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Toroidal per phase winding of the Electromagnetic DFCL

Incremental Permeability Core

Series turns

Sectional view
Salient Features of the incremental permeability Electromagnetic DFCL

• Impedance increases with fault current. Thus short circuit current is limited in a narrow band for different fault and source impedances

• Can work with Air natural cooling. No requirement of cryogenic cooling

• Simple and rugged in construction.

• Failure if at all to high impedance mode which will increase the normal voltage drop and is easily detected
Innovative Electromagnetic Dynamic fault current Limiter

Prafulla Deo & Tushar Shah

Impedance behavior of DFCL for healthy network pre-fault or post fault-clearance

No short circuit – Zdfcl is very low so that regulation is not adversely affected

Zl 0.05 p.u.

Zs 0.1 p.u.

Lumped source Impedance

V 1 p.u.

Lumped Power source

To Load
Impedance behavior of DFCL with a low impedance fault – bolted short circuit
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Impedance behavior of DFCL with a medium impedance fault

- Short circuit
 - $Z_l = 0.05$ p.u.
 - $Z_{dfcl} = 0.3$ p.u.
 - $Z_{sc} = 0.21$ p.u.

- Fault current limited to 1.5 p.u.
- Clear discrimination

Prospective fault Level w/o DFCL
- 2.77 p.u.

$I_{sc} = 1/Z_t = 1/0.66 = 1.5$ p.u.
Innovative Electromagnetic Dynamic fault current Limiter
Prafulla Deo & Tushar Shah

Impedance behavior of DFCL with a high impedance fault

\[Z_t = Z_s + Z_{dfcl} + Z_{sc} = 0.1 + 0.05 + 0.3 + 0.21 = 0.77 \text{ p.u.} \]

\[I_{sc} = \frac{1}{Z_t} = \frac{1}{0.77} = 1.3 \text{ p.u.} \]

Prospective fault Level w/o DFCL
1.5 p.u.

Clear discrimination

Fault current limited to 1.3 p.u.

Short circuit

To Load
<table>
<thead>
<tr>
<th>Zsc</th>
<th>ZdFCL</th>
<th>Fault currents in p.u. Zs – 0.1 p.u. Zl – 0.05 p.u.</th>
<th>Isc with no Limiter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DFCL current limit</td>
<td>Impedance of fixed inductor with or without Superconducting switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>0</td>
<td>0.4</td>
<td>1.82</td>
<td>4.55</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>1.54</td>
<td>2.38</td>
</tr>
<tr>
<td>0.3</td>
<td>0.25</td>
<td>1.43</td>
<td>1.92</td>
</tr>
<tr>
<td>0.4</td>
<td>0.18</td>
<td>1.37</td>
<td>1.61</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>1.33</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Illustrative example of Fault currents with DFCL & with fixed impedance Inductor with our without Superconducting switch
Thank you