Generation Dispatch in a Smart Grid Environment

Kwok W. Cheung, Xing Wang, But-Chung Chiu, Ying Xiao, Ricardo Rios-Zalapa

AREVA T&D Inc.

IEEE Innovative Smart Grid Technologies Conference
Jan 19-21, 2010
Washington, DC
Outline

- Introduction
- Smart Grid Challenges
- Smart Dispatch Framework
- Generation Control Applications (GCA)
- Practical Applications of COP: An example
- Conclusions
Outline

- Introduction
- Smart Grid Challenges
- Smart Dispatch Framework
- Generation Control Applications (GCA)
- Practical Applications of COP: An example
- Conclusions
Global Drivers for Smarter Grid

- Energy efficiency under severe Supply Constraints
- Retiring Work force
- Environment Deployment of Renewable & CO2 free energy
- Threat of cyber-security attacks
- New electrical network equipment (PMU, FACTS, HVDC, ...)
- Large interconnected Grids and reliability issues
- Energy Systems part of IT infrastructure
- Evolving Regulatory framework
 - New business model
 - Less control on power generation
- Copyright © 2009 AREVA T&D Inc. All Rights Reserved.
Smart Grid from Vision to Product

Smart Grid

- Smart Dispatch
 - Generation Portfolio Management including renewable
 - Full Integration of pricing and demand/supply principles to manage the grid
 - Dynamic balancing with centralized and distributed resource

- Smart Transmission Grids
 - On-Line Stability Analysis & Defense Plans
 - On-line Asset Management
 - Smart Power Electronic Controls (HVDC, FACTS, SVC…)

- Smart Distribution Grids
 - Automatic Meter Management System
 - Integrated Distributed Management Systems
 - Renewable and load management integration

- Smart Substation
 - Substation Protection & Control Architectures
 - Self-adaptive Defense Plans
 - Secondary Distribution Smart Grid Box

Visualization, Situation Awareness and Decision Support Tools

System Architecture including Common Information Model

Secure, deterministic and reliable data communication
Introduction

Smart Grid Challenges

Smart Dispatch Framework

Generation Control Applications (GCA)

Practical Applications of COP: An example

Conclusions
Functional Highlights of Smart Dispatch

▶ Classical Dispatch
 - Unit Commitment Scheduling, Economic Dispatch, AGC
 - Grid security, scheduling, dispatch are independent tasks

▶ Market-Based Dispatch
 - UC/ED with explicit transmission security constraints
 - Formal Day-Ahead and Real-time tasks
 - Pricing - Dual of the MW signal
 - Transparency & consistency
 - Large-scale system dispatch

▶ Smart Dispatch
 - Dispatch with explicit forward vision
 - Dispatch with intelligence (e.g. parameter adaptation)
 - Improve system resiliency against uncertainties (e.g. DER, RE, DR)
 - Mitigate root-causes for dispatch deficiencies
 - Process re-engineering for business/economic analysis
Smart Grid Challenges

- A lot of emphasis of renewables, distributed energy resources (DER) and demand response (DR).
- From centralized to distributed infrastructure
- Increase amount of uncertainties
 - Generations and Demand Response
 - Demand forecast
 - Transmission constraints
 - Resource characteristics
- Modeling of uncertainties
 - Confidence Interval
 - Scenario-based
 - Monte-Carlo simulation
 - Real-time market: Delta MW
- Smart Dispatch
 - Forward-looking view of system condition
 - More robust solution
Expanded Dimensions in Smart Dispatch

Classical Dispatch

Smart Dispatch

(Scenarios)

(Robustness)

(Time)

(Vision)

(Forensic Analysis)
Outline

- Introduction
- Smart Grid Challenges
- Smart Dispatch Framework
- Generation Control Applications (GCA)
- Practical Applications of COP: An example
- Conclusions
Vision of a Smart Dispatch System

Comprehensive Operating Plan (COP)

SKED 1
$\text{t}=30,60,90,120,180...720..$

Demand Forecast

SKED 2
$\text{t}=15,30,45,60...$

Outages

SKED 3
$\text{t}=5,10,15...$

Adaptive Model Management

Explicit Real-time Dispatch

Quarter Hourly

5 min to Hourly

5 min

Perfect Dispatch

Implicit/Indirect Dispatch

On Demand

5 min

After-the-Fact Forensic Analysis

On Demand

5 min

Physical System Operation

Archived System Operation History

On Demand
Multi-stage resource scheduling Functions (SKED1, 2 & 3): security constrained unit commitment and economic dispatch sequences with different look-ahead periods (e.g. 6 hours, 2 hours and 20 minutes)

The results of each stage form progressively refined regions that guide the dispatching decision space of the subsequent stages.

Various SKED cycles are coordinated through the Comprehensive Operating Plan (COP).
After-the-Fact Analysis (AFA)

- Systematic analysis of past events and practices
- Quantitative assessments of how do specific events and practices affect system performance
- Use-case comparative approach

Perfect Dispatch

- A class of use cases of AFA that focus on “Day-After” analysis of the performance of actual system dispatch results, including the impacts of specific events.
Demand forecast takes DR, DER, and Wind generation into account.

Need to integrate various forecast engines to achieve performance.

Easy manipulation of forecast profile (similar day, transformation etc.)
Adaptive Model Management

- Adaptive Constraint Modeling (ACM)
 - ACM uses intelligent methods to preprocess transmission constraints based on historical and current network conditions, load forecasts, and other key parameters. It shall have ability to achieve smoother transmission constraint binding.

- Adaptive Generator Modeling (AGM)
 - AGM will provide other GCA components information related to specific generator operational characteristics and performances. The resource “profiles” may contain parameters such as ramp rate, operating bands, predicted response per MW of requested change, Max & Min limits, etc.
Comprehensive Operating Plan (COP)

- COP has a presentation layer or a set of Operator UI of its own to support system operator decision making. However, it does not intend to replace but supplement UIs of individual scheduling applications.

- COP has a service layer to provide a set of APIs to interact with external power system applications or data sources.

- COP has a business application layer that performs validation, translation, transformation, consolidation and harmonization of various asynchronized scheduling data.

- COP has a persistence data layer (most likely relational) for some key scheduling data.
Outline

- Introduction
- Smart Grid Challenges
- Smart Dispatch Framework
- Generation Control Applications (GCA)
- Practical Applications of COP: An example
- Conclusions
Generation Control Applications (GCA)

- Optimization engine for security-constrained multi-period, time coupled commitment and dispatch.
 - Mixed Integer Programming (MIP) / Linear Programming (LP) based
- Support both price- and cost-based modeling and analysis, for energy, ancillary services, demand response, energy conservation, and emission reduction.
- Coordinate multiple scheduling time horizons (Intra-day, near real-time, real-time) with Comprehensive Operating Plan (COP).
- COP-based adaptive scheduling and dispatch
- Typical Configuration:
 - SKED-DA: day-ahead resource commitment (hourly interval for a look-ahead window of a day or two)
 - SKED 1: intra-day incremental resource commitment (15 min to hourly intervals for a look-ahead window of 6-8 hours)
 - SKED 2: Fast-start resource commitment (15 min intervals for a look-ahead of 2-4 hours)
 - SKED 3: Real-time dispatch of generating resources every 5 min
SKED3
sequential vs. dynamic dispatch
Value of pre-ramping

<table>
<thead>
<tr>
<th>Cost</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic dispatch</td>
<td>9570</td>
<td>10670</td>
<td>20845</td>
<td>15570</td>
<td>56655</td>
</tr>
<tr>
<td>Sequential dispatch</td>
<td>9420</td>
<td>10495</td>
<td>23220</td>
<td>20070</td>
<td>63205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PriceE</th>
<th>MaxRampUp</th>
<th>MaxRampDn</th>
<th>PgSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta</td>
<td>11</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Parkcity</td>
<td>15</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Solitude</td>
<td>30</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Sundance</td>
<td>95</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Brighton</td>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pgmin</th>
<th>t0</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Parkcity</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Solitude</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sundance</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Brighton</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pgmax</th>
<th>t0</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Parkcity</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Solitude</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sundance</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Brighton</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>
COP Coordination - Reachability

Coupling between SKED2 and SKED3 to ensure that SKED3 solution gets into the envelope of SKED2.
COP Design Principles

- COP has the repository of all operating plans in a multi-stage decision process.
- Each stage in the decision process generates a set of schedules that are reflected in its corresponding COP (COPᵢ).
- The aggregated results from the multi-stage decision process are captured in the total COP (COPᵗ), which is the merged outcome of the individual COPᵢ’s.
- A COP contains quantities (e.g. MW generation level) being scheduled over different Operating Intervals.
- Operator interaction is typically with COPᵗ.
Benefits of COP

- Holistic forward-looking view of operating plan

- Modular SKED
 - Multiple SKEDi’s are coordinated using subordinate COPi’s which are synchronized into the overall COPt.
 - This removes the need for individual SKED applications to communicate with each other directly.

- Flexible design with high availability:
 - SKED’s may be added, removed and/or modified with minimal impact on the other SKEDs and COPs.
 - Ensures high availability for the mission critical real-time GCA SKED functions. Failure of any one or more SKED components will cause smooth degradation of, instead of abrupt service interruptions to, real-time dispatch instructions.
 - Intrinsic flexibility enables low-risk, cost-effective business process evolution.
Dimension Coverage in Smart Dispatch/GCA Applications

![Diagram showing different scenarios and time coverage](image-url)

- **SKED 1**: Classical Dispatch
- **SKED 2**: Robustness
- **SKED 3**: Vision
- **SKED-DA**: GCA

(Forensic Analysis)
Outline

- Introduction
- Smart Grid Challenges
- Smart Dispatch Framework
- Generation Control Applications (GCA)
- Practical Applications of COP: An example
- Conclusions
NCG (North China Grid) applies the concept of COP to build a unified scheduling framework.

Scheduling processes range from annual planning to real-time dispatch.

NCG generation scheduling processes:

- Rolling forward scheduling monthly contract generation based on annual contracts.
- Rolling forward scheduling daily contract generation based on monthly contracts.
- Day-ahead quarter-hourly generation schedule
- Rolling forward intra-day GCA SKEDs.

COP streamlines the business processes.
North China Grid Generation Scheduling Coordination

Annual-To-Month Scheduling (e.g. year 2008)

Month-to-Day Scheduling (e.g. April 2008)

Day-Ahead Scheduling (e.g. April 11, 2008)
Conclusions

- Discussed the vision and the challenges of Smart Dispatch in the context of control center’s operations for the evolving smart grid environment.

- Presented the framework of Smart Dispatch

- Proposed a new dispatch system (GCA)
 - Cope with the increasing amount of uncertainties
 - Provide a better holistic and forward-looking view of system conditions and generation patterns and help system operators to make better decisions.

- An example to apply COP is given.

- GCA is deemed critical for the success of efficient power system operations in the near future.
Thank you!