An Optimal Reference Governor for Hybrid Fuel-Cell/Gas-Turbine as a Distributed Generation Source

Wenli Yang* and Kwang Y. Lee**

* Pennsylvania State University
** Baylor University

February 12, 2010
Outline

• Introduction
• The Hybrid Fuel-Cell Power Plant
• An Optimal Reference Governor
• Optimization Results
• Conclusion
Introduction

• Distributed Generation
 – Use smaller power generation units close to load centers other than centralized power plant
 – Advantages:
 • Reduced power loss
 • Improved power quality
 • Improved reliability
 – DG in Smart Grid
Introduction (Cont.)

• Fuel Cell Power Plants
 – Alternative power source in DG
 – Convert energy w/o combustion
 – Advantages
 • High conversion efficiency
 • Very low emission
 • Fuel flexibility
 • Flexible siting and scalability
Introduction (Cont.)

• The Hybrid Fuel-Cell Power Plant
 – Integration of fuel cells and gas turbine
 – Direct FuelCell/Turbine® (DFC/T)
 • 250 kW Direct FuelCell® (MCFC) + 60 kW Gas Turbine
 • Fuel reformed internally w/o additional reformation devices
 • Expected high fuel efficiency up to 75%
 – Optimal operation problem
 • Cannot reach high efficiency w/o proper operation
 • High complexity of the hybrid power plant
 • Need advanced optimization method
The Hybrid Fuel-Cell Power Plant

- Process Description
 - Gas flow
 - Power flow
The Hybrid Fuel-Cell Power Plant

• Chemical Reactions
 – Fuel reformation
 • In the anode and the pre-converter
 \[\text{reforming} \quad 3H_4 + H_2O \rightarrow CO + H_2 \]
 \[\text{water-gass shift} \quad CO + H_2O \rightarrow CO_2 + H_2 \]
 – Electrochemical reactions
 • Anode
 \[H_2 + CO_3^- \rightarrow CO_2 + H_2O + 2e^- \]
 • Cathode
 \[CO_2 + \frac{1}{2}O_2 + 2e^- \rightarrow CO_3^- \]
The Hybrid Fuel-Cell Power Plant

• Control Schemes
 – Power Control
 • By Methane flow rate \(n_{CH_4} \) and stack current \(I^2 \)
 • According to power demand
 – Stack temperature Control
 • By LTR and SSH control moves
 • According to stack temperature setpoints
 – Pressure Control
 • Anode back-pressure control
 • Stack differential pressure control
 • According to constant setpoints
Optimal Reference Governor (ORG)

- The Structure of the ORG
 - Plant Model (state estimator)
 - Operating Windows
 - Multiobjective Optimization Module (MOM)
Optimal Reference Governor (ORG)

• The Structure of the ORG (Cont.)
 – Input
 • Power load demand from central dispatch center
 – Outputs
 • Six setpoints or feedforward controls to be optimized
 – Stack current density: I^2
 – Methane flow rate: n_{CH_4}
 – Turbine speed: RPM
 – SSH power: Q_{SSH}
 – LTR control move: u_{LTR}
 – AGO control move: u_{AGO}
Optimal Reference Governor (ORG)

- The Structure of the ORG (Cont.)
 - Search mode
 - Candidate setpoints go to the state estimator
 - The state estimator approximates the behavior of the plant
 - MOM evaluates the objective and refines the solution
 - Executed periodically or load demand changed
 - Switch to run mode after several iterations
 - Run mode
 - Optimized setpoints go to the actual plant
 - Serve as the references for the local control scheme
The Mathematical Model

• A State Estimator
 – Evaluates the candidate setpoints
 – Estimates the plant output based on given setpoints

• Nomenclature
 – Gas components: \(S = \{H_2, CH_4, CO, CO_2, H_2O, N_2, O_2\} \)
 – Mole fractions: \(x_K \) and \(x_K^{in} \)
 – Mole flow rate: \(N_K^{in} \)
 – Stored gas: \(n_K \)
 – Reaction rates: \(R_{K,j} \) and \(R_{K,j}^{(i)} \)
 – Stack temp. and heat capacity: \(T_S \) and \(C_S \)
 – Enthalpies of I/O flows: \(H_K^{in} \) and \(H_K^{out} \)
 – Where \(K \in \{A, C\} \) \(A: \) anode ; \(C: \) cathode
The Mathematical Model (Cont.)

- **Components Balances**
 - Dynamic equations

\[
\dot{x}_K = \frac{1}{n_K} \left[N_{K}^{in} (x_{K}^{in} - x_{K}) - x_{K} \sum_{j=1}^{7} \sum_{i=1}^{7} R_{K,j}^{(i)} + \sum_{j} R_{K,j} \right]
\]

- **Energy Balances**
 - Dynamic equations

\[
\dot{T}_S = \frac{1}{C_S} \left[N_{A}^{in} (H_{A}^{in} - H_{A}^{out}) - H_{A}^{out} \sum_{j=1}^{7} \sum_{i=1}^{7} R_{A,j}^{(i)} + N_{C}^{in} (H_{C}^{in} - H_{C}^{out}) - H_{C}^{out} \sum_{i=1}^{7} R_{C}^{(i)} - P_S - Q_{loss} \right]
\]

- where \(P_S\): stack electric power; \(Q_{loss}\): heat loss
The Mathematical Model (Cont.)

• The Turbine Model
 – Mechanical model:
 \[J \frac{d\omega}{dt} = \tau_T - \tau_C - \tau_G \]
 – Thermomechanical model:
 \[\tau_{T,C} = \frac{N_{T,C} \left(H_{T,C}^{\text{out}} - H_{T,C}^{\text{in}} \right)}{\omega} \]
 – Electrical model:
 \[\tau_G = K_m I_G, \quad v_G = K_e \omega \]
 – where
 \[J \] : the inertia of the linked mechanical system;
 \[\omega \] : the angular speed of the rotation of the shaft;
 \[\tau_{T,C,G} \] : the torques of turbine, compressor, and generator;
 \[v_G, I_G \] : voltage and current of the equivalent DC generator;
 \[K_m, K_e \] : armature and motor constant of the generator.
Operating Windows

• The solution space for optimization algorithms
 – Providing search ranges for the six setpoints

• Physically realizable operating ranges
 – Split ratio of control valves
 – Power limit of electrical heater

• To determine operating windows
 – Theoretical analysis
 – Simulation
Operating Windows (Cont.)

- Simulation of the mathematical model
 - With designed inputs
 - Simulation results are plotted against power demand

![Graphs showing various parameters against power demand.](image-url)
Multiobjective Optimization Module

• The core optimizer of the ORG
• Modern heuristic optimizations in power systems
• The Particle Swarm Optimization (PSO)
 – Simulation of bird flocks
 – Population based heuristic algorithm
 – Fast convergence in large-scale nonlinear problems
 – Extension to multi-objective problems
 • Weighted aggregation
 • Pareto theory
Problem Formulation

• Objective Functions
 – Power tracking
 – Temperature tracking
 – Efficiency

• States Estimation
 – The mathematical model serves as a state estimator

\[F_1 = \sum_{i=1}^{N} (P_{load} - P_{net})^2 \]
\[F_2 = \sum_{i=1}^{N} (TCI_{set} - TCI_{act})^2 \]
\[F_3 = \sum_{i=1}^{N} \frac{P_{csm}}{P_{net}} \]

\[[P_{net} \ TCI_{act}] = f_{estimator}(I^2, n_{CH_4}, RPM, Q_{SSH}, u_{LTR}, u_{AGO}) \]

– P_{net} and TCI_{act} are used to evaluate objective functions
Problem Formulation (Cont.)

• The optimization Problem
 – Search for the six setpoints
 \{ I_2 \ n_{CH_4} \ RPM \ Q_{SSH} \ u_{LTR} \ u_{AGO} \}
 to minimize \{ F_1 \ F_2 \ F_3 \}

• Constraints
 – Each setpoint searched by the MOM must belong to its operating window
Optimization Results

• MOPSO with Pareto Theory
 – Test power load = 250 kW
 – 12 candidate solutions and their projections
Optimization Results (Cont.)

- **Weighted Aggregation**
 - Need additional knowledge to select weights
 - Weights are determined by specific requirements
 - Without losing generality, select
 \[F = 0.4F_1 + 0.4F_2 + 0.2F_3 \]
 - Test power load: 150 kW – 300 kW with 5 kW increment
Optimization Results (Cont.)

• **Weighted Aggregation**
 – Solutions: optimized setpoints

![Graphs showing optimization results for various parameters: Current Density, Methane Flow Rate, Rotational Speed, SSH Power, LTR Control Move, AGO Control Move, and Power Demand.](image-url)
Optimization Results (Cont.)

- **Weighted Aggregation**
 - System response with the optimized setpoints

- **DFC DC Power**
 - [Graph showing DFC DC Power]

- **Turbine AC Power**
 - [Graph showing Turbine AC Power]

- **DFC/T Net Power**
 - [Graph showing DFC/T Net Power]

- **Overall Plant Efficiency**
 - [Graph showing Overall Plant Efficiency with Sim. w / ORG and Exp. w/o ORG]

- **Stack Temperature**
 - [Graph showing Stack Temperature]

- **Cathode Inlet Temperature**
 - [Graph showing Cathode Inlet Temperature with Sim. w / ORG and Setpoints]
Conclusion

• The DFC/T Power Plant
 – An alternative power source for DG
 – Advantages

• ORG for the DFC/T Power Plant
 – Generate optimal setpoints to improve efficiency
 – Advance heuristic optimization algorithms
 – A mathematical model serves as a state estimator

• An Optimization Framework
 – A nonlinear multi-objective optimization framework
 – Capable of other types of power plants
Thank you!

• Questions?
Algorithms for the MOM

• Modern Heuristic Optimizations
 – Genetic algorithms
 – Particle swarm optimization
 – Evolution strategies and evolutionary programming
 – Simulated annealing
 – Selected PSO as the first attempt
 • Fast convergence on large-scale problems
 • Wide applications in power systems
 • Low implementation complexity
PSO Algorithm

- **Step 1:** Initialize x_i^1 and v_i^1 for all i. Usually take $x_{i,j}^1 \in$ operating window.

- **Step 2:** Let the private best, $p_{best_i} = x_i^1$

- **Step 3:** For each particle, do
 - Create random vectors r_1 and r_2, by taking $r_{1,j}, r_{2,j} \in U[0,1]
 - Update the particle velocities:
 \[v_{i}^{k+1} = w v_i^k + c_1 r_1 \odot (g_{best} - x_i^k) + c_2 r_2 \odot (p_{best_i} - x_i^k) \]
 - Update the particle positions:
 \[x_{i}^{k+1} = x_i^k + v_i^k \]
 - Update the private best: if $f(x_{i}^{k+1}) < f(p_{best_i})$, then $p_{best_i} = x_{i}^{k+1}$
 - Update the global best: if $f(x_{i}^{k+1}) < f(g_{best})$, then $g_{best} = x_{i}^{k+1}$

- **Step 4:** If converged, stop iteration, and g_{best} is the optimal solution of the problem. Otherwise, $k = k+1$, go to step 3.
PSO Parameters

– Dimension: 6
– # of particles: 2000
– Max. # of iteration: 100
– \(w = 0.9 \) to 0.4
– \(C_1 = C_2 = 0.3 \)
Pareto Theory

- To solve multiobjective optimization problems
- Pareto dominance
 - A dominates B (or B is dominated by A), if
 - all criteria of B are no better than A, and
 - at least one criterion of A is strictly better than B.
 - A dominates B means A is absolutely better than B.
- Pareto based MOPSO
 - Keep a repository of particles that are nondominated by any other particles
 - Use the repository as the *global best* to lead the search
Realization of State Estimator

• Mathematical model
 – Based on analytical analysis (mass and energy conservations)
 – Continuous state model realized by differential equations
 – Accurate but computationally expensive

• Neural network model (future work)
 – Trained by operational data
 – Discrete state model
 – Nonlinear approximator
 – Computationally efficient