Demonstrating the Capacity Benefits of Dynamic Ratings in Smarter Distribution Networks

Luis(Nando) Ochoa, Lucy C. Cradden, and Gareth P. Harrison

Institute for Energy Systems
The University of Edinburgh
• Political decisions

→ Targets to decrease CO₂ emissions
→ Targets to increase the use of renewable sources of energy
→ etc., etc., etc.

27/11/2007

A new target to generate 50 per cent of Scotland’s electricity from renewables by 2020, with an interim target of 31 per cent by 2011, has been set.

The Scottish Government's previous renewable target was 40 per cent by 2020.
Activity 3.1 “Strategies to maximise the absorption of new generation”

→ To what extent can innovative schemes (a more ‘intelligent’ network) increase the penetration of (renewable) Distributed Generation?
Changing Networks

Now

Passive (Semi-active) Networks

Why?

‘Fit and forget’ connection of distributed generation (DG)

Mid-term

Distribution Automation

Why?

Increase reliability

… but DG is treated the same way

Long term

Active Network Management (ANM)

Why?

Increase and improve DG and DER integration

… high usage of assets
Changing Networks

Now

Passive (Semi-active) Networks

- ‘Fit and forget’ connection of distributed generation (DG)

Mid-term

Distribution Automation

- Why?
 - Increase reliability
 - … but DG is treated the same way

Long term

Smart Distribution Grids

- Why?
 - Increase and improve DG and DER integration
 - … high usage of assets
Advanced Distribution Management System
UK Incentives for Facilitating the Connection of DG and Innovation in Distribution Networks

- Innovation Funding Incentive (IFI)
 - R&D, 0.5% of the turnover for eligible projects
 … to have more innovation
- DG Incentive
 - £2.5/kW/year (for 15 years)
 … for DNOs to have a more proactive attitude
- Registered Power Zone (RPZ)
 - +£2.0/kW/year (for the first 5 years). Cap of £0.5m/DNO/year
 … to develop cost-effective approaches for connecting DG
3 AUGUST 2009

R/29

Ofgem’s £6.5 billion investment proposals to boost customer service and cut carbon from regional electricity networks

- A £6.5 billion investment proposal for 2010-2015 will deliver new and renewed regional networks, building on £5.2 billion set in 2005-2010
- Ofgem requires companies to deliver investment plans for 17 per cent less than their forecasts

This would significantly improve the network service and deliver the New £500 million Low Carbon Networks Fund for large-scale trials of advanced technology and commercial initiatives

- Ofgem’s package tough but fair deal that will deliver for energy customers today and in the future

Energy regulator Ofgem has unveiled proposals that will deliver better customer service from the regional electricity network companies, maintain high network reliability and pave the way for further carbon reductions. The package will add an average of less than £4 a year to today’s annual household electricity bill.
RPZ – EDF Energy Voltage Constraints

- Coordinated control of OLTC
- Uses (measures/estimates) generation and demand data
- Can double the connectable DG capacity
RPZ – Scottish and Southern Energy (SSE) Thermal Constraints

- The Orkney Islands have great wind resources but are connected to the mainland through submarine cables.
- This system uses:
 - availability of the circuit
 - variability of wind power
 - variability of demand
- Significantly increases the export capacity.
RPZ – E.On Central Networks
Dynamic Ratings

- Dynamic monitoring of line ratings (132kV) – increases the connection capacity of DG
- Helps transporting the energy from off-shore wind farms
- Line ratings is calculated using the ambient temperature and wind speeds
- Power donut (www.usi-power.com)
To what extent can innovative schemes (a more ‘intelligent’ network) increase the penetration of (renewable) Distributed Generation?

Demonstrating the Capacity Benefits of Dynamic Ratings in Smarter Distribution Networks
Thermal Ratings for Overhead Lines (UK)

Thermal ratings for overhead lines in the UK are calculated based on assumptions of certain weather conditions in particular seasons.

- Engineering Recommendation (ER) P27
 - 2°C (winter), 9°C (spring/autumn) and 20°C (summer)
 - Constant wind speed of 0.5 m/s
 - Zero solar radiation

The assumption of such a low wind speed neglects the potential cooling effect of the wind, thus giving a conservative rating value in many circumstances.
The current carrying capacity of overhead lines can be calculated through different methods.

IEEE Std 738-2006

• At a given set of weather conditions, \(m \), the (single-phase) ampacity for an overhead line \(l \) will be obtained considering the maximum permissible temperature of the conductor:

\[
I_{l,m}^+ = \sqrt{\frac{q_{c,m} + q_{r,m} - q_{s,m}}{R(T_c^+)}} \text{ Amp}
\]

• convective cooling
• radiative cooling
• solar heating
• resistance of the conductor

\[
f_{l,m}^{+, (1,2)} = \sqrt{3} V_{b=\beta_l^{(1,2)}} I_{l,m}^{+, pu} \text{ pu}
\]

• maximum 3φ power flow
Example

• 33kV, ACSR 2/0 conductor, with a diameter of 11.354mm, and 0.427 and 0.577 Ω/km of AC resistance at 25 and 75°C, respectively.

• Maximum ambient temperature adopted: 75°C.

• Conductor is sited at an elevation of 100 m above sea level and the wind direction is perpendicular to the axis of the conductor. Solar radiation is neglected.

<table>
<thead>
<tr>
<th>Season</th>
<th>Winter</th>
<th>Spring/Autumn</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta (°C)</td>
<td>2</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>wind speed (m/s)</td>
<td>0.5 (ER P27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampacity</td>
<td>270.4</td>
<td>257.6</td>
<td>235.9</td>
</tr>
<tr>
<td>Max. 3φ Power Flow (MVA)</td>
<td>15.5</td>
<td>14.7</td>
<td>13.5</td>
</tr>
<tr>
<td>wind speed (m/s)</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampacity</td>
<td>370.7</td>
<td>352.8</td>
<td>322.5</td>
</tr>
<tr>
<td>Max. 3φ Power Flow (MVA)</td>
<td>21.2</td>
<td>20.2</td>
<td>18.4</td>
</tr>
</tbody>
</table>
Absorbing More Renewables
Incorporating Operation into Planning

Maximise DG Capacity

Subject to:

Basic AC OPF
- real and reactive nodal power balance
- voltage level constraints
- voltage angle set to zero for the reference bus
- thermal limits (lines and transformers)
- constant power factor operation of DG units

Multi-Period AC OPF + ANM

New Constraints
- voltage step change
- N-1 security constraints
- fault level constraints

New Control Schemes
- coordinated voltage control
- adaptive power factor control
- generation curtailment
- dynamic ratings
Multi-Periods
Handling the Variability of Demand and Generation

Wind
Demand

Winter: 1st Week of January

d0.7-w0.0
Multi-Periods
Handling the Variability of Demand and Generation

- The process is extended to cater for seasonality, wind speeds, temperatures, etc.
The 5km-long feeder is composed by ACSR 2/0 conductors.
Peak demand 5MW.

2 x 30MVA
132/33 kV

15.5MVA, winter
14.7MVA, spring/autumn
13.5MVA, summer

% of Wind Speed (with respect to the maximum value)
Case Study: Snapshot

• Maximum generation capacity increasing the power flow limit of the connection line 2-3. Constant generation (unity p.f.) and minimum demand. Target voltage at the busbar is 1.010pu (summer).
• Connectable wind power generation capacity (in MW) considering static seasonal ratings and dynamic ratings, as well as the use of coordinated voltage control (CVC).

• ER P27 temperatures are adopted.

Dynamic Ratings + CVC + unity PF: DG penetration doubles that without ANM
Connectable (renewable) DG capacity

- Average seasonal temperatures derived from the 2003 time-series data for central Scotland (3.9°, 9.2°, 15.2°C, in winter, spring/autumn, and summer, respectively)

This new set of temperatures translated into an average increase of 3.7%
Conclusions

Wind sites are ideal for the harvesting of such renewable resource. At the same time, given the cooling effect of wind, larger volumes of power can be transferred through overhead lines without reaching critical points. This is a win-win scenario where the resource being harvested also frees transfer capacity that otherwise would be achieved with conventional reinforcements.
Conclusions

➡️ Compared to the widely used passive operation of distribution networks, very high penetration levels of new variable generation capacity can be reached by strategically adopting Smart Grid-like control schemes.
Conclusions

This AC OPF-based planning tool allows quantification of the benefits in terms of the ability of innovative schemes to ‘free up’ capacity, and thus, help justify the corresponding investment.

It is important, however, that each solution, or the combination of them, should be assessed on a case-by-case basis since network characteristics drive the performance and cost-effectiveness of each scheme.
Thanks!

Questions?

Dr Nando Ochoa

luis_ochoa@ieee.org

Institute for Energy Systems

The University of Edinburgh