Experiences from deploying real smart grid projects

Wanda Reder

Vice President – S&C Electric Company
IEEE Smart Grid Chair

October 12, 2010
Gothenburg, Sweden
Storage, Compensation, Self Healing… in the Grid

Communication Media: BPL, Wi-Max, Satellite, Fiber, DSL, Wi-Fi, RF Mesh, etc.

Smart Grid Infrastructure: Software/database, network communication and monitoring, and control architecture
Successful Policy … Driving Growth

US Annual Wind Installed Additions

- Partial PTC Year
- Full PTC Year
- Forecast with PTC extension

Renewable Portfolio Standards

- 36 States & DC

Aggressive Global Targets

- US … 20% Wind ‘30
- EU … 20% Renewable Energy ‘20
- China … 30 GW Wind ‘20
- India … 12 GW Wind ‘12
Reactive Power Requirements

• Capability of synchronous generators forms basis for wind interconnection requirements

• FERC Order 661A is a USA grid code for maintaining power flow limits, voltage limits, and voltage control:
 – Low voltage ride-through (LVRT)
 • Generator stays on line during a 3 phase fault with normal fault clearing (~4 to 9 cycles) and subsequent post fault voltage recovery to prefault voltage unless clearing the fault disconnects the generator
 – Power factor +/- .95 with dynamic voltage support
Reactive Power Compensation

• Collector substation-based systems
 – Mechanically-switched capacitors and reactor banks
 – Static Var Compensators
 – Hybrid compensators

• Inverter-based dynamic component
 – 1.25 MVAR modules
 – 264% of continuous rating for 2 to 4 seconds
 • LVRT support
 • Dynamic range requirement
 – For transient / dynamic events
 – Use with mechanically switched capacitors and reactors
Inverter-based Dynamic Compensators

DSTATCOM: Typical configuration

Supporting over 2.5 GW of wind generation

Meeting Interconnect Requirements for 12 different Grid Codes/ System Operators
Reactive Compensation System Installations

- Argonne Mesa, New Mexico
 - 90 MW
 - Mitsubishi MWT1000 WTGs
 - ±12 MVAR DSTATCOM and 91 MVAR switched capacitors
 - Controlling power factor at POI 30 miles away
Reactive Compensation System Installations

- **High Lonesome, New Mexico**
 - 100 MW
 - 40x Clipper 2.5 MW WTGs
 - ±6.25 MVAR DSTATCOM and 3x 7.43 MVAR switched capacitors (2 as damped tuned harmonic filters)
 - Controlling voltage on high side of main wind farm transformer, which is 13.4 miles from the POI
Reactive compensation in UK

±6.25/16.5 MVAR on 48 MW Wind Plant application controlling 3 SSDs
 – Two switched total cap banks of 8 MVAR
 – One switched reactor bank of 7 MVAR
Energy Storage

- Energy Storage Benefits
 - Cost deferral of new substations
 - Improved service reliability
 - Less stress on aging infrastructure
 - Integration of renewable energy
 - Energy market value
 - Frequency regulation

- Several 1 – 4 MW NaS batteries installed in the US
 - Peak shaving for a station transformer
 - Dynamic islanding with distribution automation integration
 - More dispatchable wind generation
Charleston, WV: 1MW NaS Battery

- Chemical Substation, Charleston WV
- Store energy off-peak to Sodium-Sulfur battery
- Reduce substation peaks by injecting stored energy
- Technology demonstration project
- Objective—defer replacement of 20 MVA transformer

Chemical Substation: Transformer Load
Three Worst Days of Summer (7/19, 8/2, and 8/3/2006)

- Maximum Load: 20.365 MVA (with Battery)
- Maximum Load: 21.234 MVA (without Battery)
- Minimum Load: 11.537 MVA (without Battery)
- Minimum Load: 12.735 MVA (with Battery)

Charge: 1.2 MW, 7 hrs
Discharge: 1.0 MW-peak, 8.5 hrs

SMS Reduced the Peak Load to match the Transformer Rating
Bluffton, OH: 2 MW NaS Battery

- 2.5 MVA / 2.0 MW – Outdoor Installation
- Automated islanding, sectionalizing, and restoration
- Generator for heater backup power
Luverne, MN: 1MW NaS Battery

- 1.25 MVA / 1.0 MW – Outdoor Installation
- Wind farm smoothing
- Dispatched wind
- Peak shaving
- Energy arbitrage
Presidio, TX: 4MW NaS Battery

- 5.0 MVA / 4.0 MW – Indoor Installation
- Automated islanding, sectionalizing, and restoration
- Alternate Utility (CFE) source for heater backup power
Dynamic Islanding

• Load data known by automated distribution devices
• Dynamic islanding activated upon loss of power
• The maximum number of customers are restored
 serviced by the battery based upon:
 – Last load information
 – Energy in the battery
• The island can be minimized as the battery depletes
• Customer load served until battery is exhausted or
 power is restored
Community Energy Storage

- Develop distributed storage at the utilization voltage level
- 25 kW, single-phase, pad-mounted
- 1-hour run-time initially
- Local voltage regulation
- Peak shaving
- Load smoothing – buffer plug-in vehicles
- Aggregate control of pad-mounted units serving multiple residential or light commercial customers
Lessons

• Suppliers
 – Need to work with others
 – Consider backward / forward compatibility
 – Support interoperability standards
 – Stay abreast of security requirements, policies and technologies
 – Seek technologies from non-traditional sources

• Users
 – Think through the macro smart grid roadmap
 – Work with others for technology assessments
 – Gain experience with integrated deployments
 – Validate business case assumptions
 – Build regulatory confidence
IEEE Smart Grid

- Organize, coordinate, leverage and build upon the strength and experience of all IEEE entities

IEEE Transaction on Smart Grid
IEEE Transaction on Sustainable Energy
http://mc.manuscriptcentral.com/pes-ieee

Reprinted 2009 Smart Grid articles.

http://smartgrid.ieee.org/
Conclusions

• Smart grid is an enabler
 – Maintaining / enhancing reliability
 – Integrating new resource development
 – Facilitating customer participation

• Smart Grid requires a new look at operations, planning, markets, technology, standards and workforce adequacy

• Technologies are available – use them

• IEEE Smart Grid is the number one resource
For More Information Contact:

Wanda Reder

Vice President — Power Systems Services
S&C Electric Company

773-338-1000 x2318
wreder@sandc.com